DO NOT TURN THIS PAGE!!!!!

NAME:	KEV	

PHYSICS 4A FALL 2013 EXAM 1

PARTIAL CREDIT will be given so do what you can and make sure that you show all work for each problem. **No credit will be given if no work is shown**. The point value of each question is indicated.

- 1. Just as you throw a package from the top of a 20 m high building with initial speed V_{\circ} at an angle of 30° with the horizontal, your friend, who is running toward the building at speed 0.8Vo, is 22 m away. (15 pts)
 - Calculate V_o in order for your friend to catch the package.
 - How far from the building does your friend catch the package. b)
 - Calculate the speed at which the friend catches the package. c)

a)
$$X_p = X_f$$

 $(v_0 (0530)t = 22 - 0.8 v_0 + 1.67 v_0 + 22$
 $v_0 = 13.2$
 $v_0 = v_f$

$$\frac{1}{2}(13.2) - 4.9 + 2 = -20$$

b)
$$X_{P} = (5.7) (0530 (2-3))$$

 $X_{P} = 11.35 \text{ m}$

c)
$$V_{xp} = \frac{dx_p}{dt} = \frac{V_0(0.530)}{4.9m}$$

$$V_{yp} = \frac{dx_p}{dt} = \frac{V_0(0.530)}{4.9m}$$

$$= \frac{19.7m}{5}$$

- 2. A hot air balloon has just lifted off from rest and is rising upward at a rate of 1.8 m/s². Suddenly one of the passengers realizes she has left her camera on the ground. A friend picks it up and throws it straight upward with an initial speed of 20 m/s. The passenger is 5.0 m above her friend and moving at 2.0 m/s when the camera is thrown. Using a reference frame fixed to the balloon at the instant the camera is thrown. (15 pts)
 - a) Calculate the position of the passenger when she catches the camera.
 - b) Calculate the speed of the camera.
 - c) Calculate the displacement of the camera.

3. Given the acceleration graph for a model car determine the v vs. t and x vs. t graph. Assume that at t = 0, x = 0 and y = 0. (10 pts)

T. Domino the following	without any mathematical definitions: (2 pt each)	
1. Unit-vector	atmensionless vector, one unit in length	;
	used to specify direction in space	, O

2. Inertial reference frame RF moving W/ constant V

- 3. Projectile Any object given can initial velocity
 then follows path determined by gravity
 and arr resistance
- 4. Trajectory path of mother of a projectife
- 5. Commutative Law of Vector Addition Vectors can be added
 in any order.